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Note 

Direct Methods for the Solution of 
Poisson’s Equation on a Staggered Grid 

I. INTRODUCTION 

The Neumann problem for Poisson’s equation on a rectangle is 

v%l = -u,, - u,, = f&9 r> 

au/an = 0 (lb) 

on the boundary of R (n represents the normal derivative). 
A frequent problem in fluid dynamics is to approximate (1) on a staggered grid 

and 

Rh = {(xi, yj) : xi = (i - $)-)dx, i = 0, 1, 2,..., M + 1, 

yj = (j - 4) 4, j = 0, I,2 ,..., N + I>, 

where M, dx, IV, and dy are suitably chosen so that 

Mdx = Iv& = 1. 

The approximation to (la) is the usual five-point star and the derivatives in (1 b) 
are approximated by central differences, e.g., ~~(0, yj) = 0 is approximated by 
(4x1 9 YJ - u(x,, , y,))/dx = 0. Letting the approximation to u(xI , JJ& be denoted 
by vu , we find that the vector v of unknowns satisfies 
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where J = 2I+ (dy/&@ L is an M x M matrix, 

and 

(This same approximation is obtained with a standard grid, but using one-sided 
differences to approximate the derivatives instead of centered differences.) 

The direct solution of this system by Gauss elimination has been discussed by 
Shintani [4]. We would like to discuss the solution by two faster methods: the 
fast Fourier transform (FFT) method and cyclic odd-even reduction with the 
Buneman modification. 

II. FAST FOURIER TRANSFORM METHOD 

To apply the techniques of FFT we must know the eigenvalues At and normalized 
eigenvectors w( (i = 1,2,..., M) of J. Gear [3] has computed the eigenvalues and 
eigenvectors of L from which we may determine that 

Ai = 2 + 4s2 sin2((i - 1) n/2&Q, s = dy/Ax (4) 

and that wit = (wli , wai ,..., wMMi) where for k = 1, 2 ,..., A4 

wk* = 
(2/A4)1’2 cos[(2k - l)(i - 1) 7r/2M], i = 2, 3,..., N 
(l/M)‘/“, i=l (5) 

Hence, it is easy to see that we can apply the FIT method with considerable 
advantage if N is highly composite [l]. 
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III. BUNEMAN'S METHOD 

We now discuss the solution of Eq. (2) by cyclic reduction with the Buneman 
variation for numerical stability. (A complete description of this method can be 
found in [2].) For this development we must assume that N = 2L+1 + 1. By adding 
rowr- 1 and row r + 1 and J times row I, half of the unknown vectors vi are 
eliminated from (2) to give the new system 

J2-21 -I 

J2-221 -I vN-2 

vN . 

JSN--8 +fw +fN-I 

Since this coefficient matrix has the same structure as that of Eq. (2), we can repeat 
the reduction process and again eliminate half of the remaining unknowns. Setting 

K(O) = J - 1, J”” = J, 

f::“’ =f;:, 1 = 1, 2 )..., N, 

we can write the r-th step of the process as 

. . . 
. . . = 

where 
K(r) = J(T-l)K(r-1) _ 1 

J(r) = [Jb-92 _ 21 

(7) 

(9) 

(10) 

f ‘d, 
1+3.2' 

= Jb-1,f (7+ + fb;‘%‘-l +fb-1) 
1+3.2' 1+35*2'-' ' (11) 

The last step is with r = k, after which we have only the remaining system 

(12) 
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from which we obtain the single linear system 

Mu,,,, = (K’k’J’k) - 21) V1+‘p = K'")$. +fi(k) +fns'c) . (13) 

To solve (13) we show that A4 can be factored as a product of 2k+1 linear factors 
of the form J - piI. To solve for the remaining unknowns we need to give the 
same sort of factorization for each Kc’) and Jcr). The factorization for W is 
developed in [2]. It is 

Jf7) = fi (J - 2cos[(2j - 1)77/2’+‘]r). 
i=l 

From (7) and (9) we see that K@) is a polynomial, say q,. , of degree 2? in J. The 
polynomials qr satisfy 

qo=x-1 

4r+1 = Pr& - 1, r = 0, 1, 2 ,..., k - 1, 

where pr is the polynomial in J which is equal to J17). From [2] we know that if the 
substitution x = 2 cos 19 is made, then 

PI(X) = 2 cos 2’8. (16) 

Using this same substitution we find that 

qP = cos(2’ + +) @OS gs. (17) 

(Using (15) and (16), this statement may be easily verified by induction.) Hence, 
we have that 

K@) = fi (J - 2cos[(2j - 1)7~/(2’+l + 1)11). (18) 
j-1 

The factorization of M requires finding the zeros of qk pk - 2. using the represen- 
tations (16) and (17) we get that 

M = [A (J - 2cos(2jrr/(F+l+ 1)) I)] [ 2 (J - 2cos&/2k) I)] . (19) 

From (4) with i = 1 we note that (2) is singular. M is also singular, as can be seen 
from the factor corresponding to j = 0.) 
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The Buneman variant requires that the right sides fir’ defined by (11) not be 
computed but be defined implicitly by two auxiliary vectors pi” and qj” where 

fi(T) = Jmp;r) + 41(T), @a) 

In our case this factorization only applies when I = 1 + 2?, 1 + 2 * 2’,..., N - 2’. 
For the remaining ones we write 

and 

fp = jpp;, + qcr) 
1 CW 

Just as in [2], we can use the factorizations (20) and the de&ring Eq. (11) to 
develop implicit recurrence formulas for the pr’ and qy’. Initially they are 

K(op =fl, qy =f2 +pp 

J(‘)pj(l) = fj , q;’ = h-l +h+l + 2pF’, j = 3, 5, 7 ,..., N - 2 

jy’o’p$’ = fN , qp =fN--1 +p$', 

then for r = 1,2,..., k - 1 

K(T)(p,(r+l) - pf’) = q;’ + pc2, 
% 

b-+1) = q~2'+&+l) ) 

J(‘)(P j’+l) - pj(‘3 = pf$ + p$, + 4,!*’ 41”“’ = qEs, + qzz, + 2p:‘+1) ) 

j = 1 + 2?+l, 1 + 2 * 2r+l, 1 + 3 * 2T+1 ,..., iV - 2++l, 

K(T)(pY) - p;‘) = q;) + pg(& 
qN 

(7+1) = q;td27 +&+I), 

and finally p:f$’ and qit$’ are obtained from above with r = k and j = I + 2”. 
The solution of (2) is then obtained by solving the following equations: 

M&+2 (k+l) I - P;$> = ql+@ , 
w 

J$qv j - p!*)) = q(k) + v 3 3 1+2k ' j= 1,N; 

then for r = k - 1, k - 2,..., 0 

J”“(v f - py)) = qi(T) + vj-2F + ‘j+s’ 9 
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for j = 1 + 2’, 1 + 3 . 2’, 1 + 5 . 2’,..., N - 2’, where 

$0’ = 0 5 and qy) = fj. 

As we have seen, (21) is a singular system. The right side of (21) must be 
orthogonal to (1, l,..., 1)“. It can be proved that this condition is a consequence 
of the original orthogonality condition 

5 ;hj=O 
5=1i=l 

which arises from the condition that the right side of (2) must be orthogonal to 
(1, 1, l)...) 1>t. 

As in [2], we can reduce the storage requirements by half by not storing the 
vectors pi’!, but using instead their definitions in terms of the vectors 41”. 

IV. COMPARISON OF THE Two ALGORITHMS 

An operation count quickly shows that both algorithms require about 4Na log, N 
(we have taken N = M) multiplications, so they appear to be about equal. In fact, 
numerical experiments on the NCAR CDC 6600 using M = N = 64 have shown 
that the Buneman algorithm takes about 710 msec to compute the solution while 
the FFT algorithm requires about 1870 msec. The FFT algorithm can be speeded 
up by eliminating the two reorderings required since they are inverses of each 
other. However, the eigenvalues then must be reordered so at most one reordering 
can be eliminated. Subtracting the time required for 64 reorderings in the above 
example still leaves a running time for the FFT routine of 1490 msec. So the 
Buneman algorithm is at least twice as fast as the FFT routine. This may be 
accounted for by realizing that the operation counts only agree in the highest 
order terms and a more careful count gives 4N2 log, N + +N2 for the Buneman 
algorithm, but 4N2 log, N + 14N2 for the FFT algorithm. 

It appears that even though the Buneman algorithm is more complicated, it 
is superior to the FFT algorithm. 
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